Functional characterization of low-prevalence missense polymorphisms in the UDP-glucuronosyltransferase 1A9 gene.
نویسندگان
چکیده
The UDP-glucuronosyltransferase (UGT) 1A9 has been shown to play an important role in the detoxification of several carcinogens and clearance of anticancer and pain medications. The goal of the present study was to identify novel polymorphisms in UGT1A9 and characterize their effect on glucuronidation activity. The UGT1A9 gene was analyzed by direct sequencing of buccal cell genomic DNA from 90 healthy subjects. In addition to a previously identified single nucleotide polymorphism (SNP) at codon 33 resulting in an amino acid substitution (Met>Thr), two low-prevalence (<0.02) novel missense SNPs at codons 167 (Val>Ala) and 183 (Cys>Gly) were identified and are present in both white and African-American subjects. Glucuronidation activity assays using HEK293 cell lines overexpressing wild-type or variant UGT1A9 demonstrated that the UGT1A9(33Thr) and UGT1A9(183Gly) variants exhibited differential glucuronidation activities compared with wild-type UGT1A9, but this was substrate-dependent. The UGT1A9(167Ala) variant exhibited levels of activity similar to those of wild-type UGT1A9 for all substrates tested. Whereas the wild-type and UGT1A9(33Thr) and UGT1A9(167Ala) variants formed homodimers as determined by Western blot analysis of native polyacrylamide gels, the UGT1A9(183Gly) variant was incapable of homodimerization. These results suggest that several low-prevalence missense polymorphisms exist for UGT1A9 and that two of these (M33T and C183G) are functional. These results also suggest that although Cys183 is necessary for UGT1A9 homodimerization, the lack of capacity for UGT1A9 homodimerization is not sufficient to eliminate UGT1A9 activity.
منابع مشابه
Cloning and characterization of the human UDP-glucuronosyltransferase 1A8, 1A9, and 1A10 gene promoters: differential regulation through an interior-like region.
The human UDP-glucuronosyltransferases, UGT1A8, 1A9, and 1A10, are closely related in sequence and have a major role in the elimination of lipophilic chemicals by glucuronidation. UGT1A8 and 1A10 are expressed exclusively in the gastrointestinal tract, whereas UGT1A9 is expressed mainly in the liver and kidneys. To determine the factors contributing to the extrahepatic expression of these UDP-g...
متن کاملVariants, haplotypes and htSNPs of UDP-glucuronosyltransferase 1A9, 1A7 and 1A1 genes in Chinese Tibetan Population
Glucuronidation is a critical and elimination process in the detoxification of many different exogenous and endogenous compounds (Radominska-Pandya et al., 1999; Tukey & Strassburg, 2001). Glucuronides account for ~35% of all phase II drug metabolites (Evans & Relling, 1999), including therapeutic drugs such as SN-38, which is the active antitumor metabolite of the prodrug irinotecan, as well a...
متن کاملPolymorphisms of the human UDP-glucuronosyltransferase (UGT) 1A7 gene in colorectal cancer.
BACKGROUND Genetic polymorphisms in the human UDP-glucuronosyltransferase-1A7 (UGT1A7) gene are detected and significantly correlated with sporadic colorectal carcinoma. UGT1A7, which has recently been demonstrated to glucuronidate environmental carcinogens, is now implicated as a cancer risk gene. A silent mutation at codon 11 and missense mutations at codons 129, 131, and 208 lead to the desc...
متن کاملFunctional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients.
SN-38 (7-ethyl-10-hydroxycamptothecin), an active metabolite of the antitumor prodrug irinotecan, is conjugated and detoxified to SN-38 10-O-beta-d-glucuronide by hepatic UDP-glucuronosyltransferase (UGT) 1A1. Recent studies have revealed that other UGT1A isoforms, UGT1A7 and UGT1A9, also participate in SN-38 glucuronidation. Although several genetic polymorphisms are reported for UGT1A1 and UG...
متن کاملNovel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs.
In vitro metabolic studies revealed that along with UDP-glucuronosyltransferase (UGT) 1A1, the hepatic UGT1A9 and the extrahepatic UGT1A7 are involved in the biotransformation of the active and toxic metabolite of irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38). Variant UGT1A1 and UGT1A7 alleles have been reported but the polymorphic nature of the UGT1A9 gene has not been revealed yet. To fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 37 10 شماره
صفحات -
تاریخ انتشار 2009